University of Sydney scientists have used the geological record of the deep sea to discover that past global warming has sped up deep ocean circulation. This is one of the missing links for predicting how future climate change may affect heat and carbon capture by the oceans.
University of Sydney scientists have used the geological record of the deep sea to discover that past global warming has sped up deep ocean circulation.This is one of the missing links for predicting how future climate change may affect heat and carbon capture by the oceans: more vigorous ocean currents make it easier for carbon and heat to be "mixed in."
"So far, the ocean has absorbed a quarter of anthropogenic CO2 and over 90 percent of the associated excess heat," said the study's lead author, Dr. Adriana Dutkiewicz from the EarthByte group in the School of Geosciences at the University of Sydney.
Microscopic marine organisms called plankton use this dissolved carbon to build their shells. They sink down to the seabed after they die, sequestering the carbon. These sedimentary deposits form the Earth's largest carbon sink.
The authors note that climate observations and models have been used alternatively to argue that deep ocean circulation may be slowing down or speeding up during global warming. This inconsistency is a problem for modeling future climate trends and the new study, published today in the journal Geology, helps resolve this controversy.
Read More here .